+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Терморегуляторы для инкубатора своими руками: схема, инструкция

Содержание

Простая и надёжная схема терморегулятора для инкубатора | Мастер Винтик. Всё своими руками!

Терморегуляторы для инкубатора своими руками: схема, инструкция

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт.

Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузкудля инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

ТерморезисторR3
1 kОм2,7 кОм
2 кОм4,3 кОм
3,6 кОм7,5 кОм
10 кОм10 кОм
15 кОм15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ выводаНагреватель выкл / включен
1, 24,3 / 5,5
30,2 / 8,9
43,8 / 8,9
5, 64,1 / 0
70
87 / 8,9
90,2 / 8,9
10~
12, 130
149 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

Фото печатной платы

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

 Наш «Магазин Мастера«

  • Схема бегущих огней — солнышко
  • Для анимации каких-либо игрушек, для подарка или просто для творчества можно собрать схему «бегущего огня».Эффект создания огней бегущих из центра к краям. Очень похоже на лучи солнышко.Характеристики: 

    • Кол-во каналов — 3;
    • Кол-во светодиодов — 18 шт;
    • Uпит.= 3…12В.

    Подробнее…

  • Держатель для печатных плат своими руками
  • При ремонте и настройке радиолюбителям удобно будет работать с помощником — держателем печатной палаты на столе.

    Можно купить различные зарубежные приспособления для закрепления печатных плат, обеспечивающие при этом разные степени их свободы, но стоимость их очень высока.

    Подробнее…

  • Аппарат магнитной терапии своими руками
  • Аппарат магнитной терапии «Хоттабыч»

    Магнитотерапия — это метод физиотерапевтического лечения, основанный на воздействии на организм низкочастотными постоянными или импульсными магнитными полями с заданными параметрами. Магнитное поле оказывает на организм влияние благодаря парамагнитным и диагмагнитным эффектам.

    Заводские приборы очень дорогие, а вот сделать самому подобный прибор по несложной схеме и из доступных недорогих деталей доступно каждому радиолюбителю.

    Подробнее…

Популярность: 127 352 просм.

Источник: http://www.MasterVintik.ru/prostaya-i-nadyozhnaya-sxema-termoregulyatora-dlya-inkubatora/

Терморегулятор для инкубатора: схема и инструкции

Терморегуляторы для инкубатора своими руками: схема, инструкция

Разведение кур в инкубаторе – это стандартная практика, которой никого не удивишь. Простые модели поддерживают температуру и влажность на необходимом уровне, а профессиональные автоматически переворачивают яйца. В обоих случаях создавать хорошие условия для развития цыплят внутри яйца позволяет регулятор для инкубатора.

Работа терморегулятора

В устройство терморегулятора входят температурный датчик, нагревательные элементы. Датчик измеряет температуру в режиме реального времени и передает полученную информацию на основной блок управления, где реальное значение сравнивается с заданным.

При понижении температуры на нагревательные элементы подается напряжение до тех пор, пока действительные и оптимальные показатели не выровняются.

Любой терморегулятор состоит из трех основных частей:

  • Термометр для измерения температуры воздуха;
  • Основной блок управления – «мозг» устройства. Здесь задаются параметры температуры, сюда поступает информация с датчиков и отсюда подается сигнал нагревателю;
  • Нагревательное устройство. В зависимости от вида прибора это могут быть лампы накаливания, тэны и т.д.

В любой технике могут возникнуть поломки, но сбои в работе терморегулятора могут оказаться губительными для зародышей цыплят.

Чтобы исключить подобный исход инкубации, в устройство встроен сигнальный элемент, который привлекает внимание птицевода и сообщает о неисправности.

Терморегулятор своими руками

Изготовление самодельного терморегулятора для инкубатора требует наличия определенных навыков:

  • Чтение микросхем;
  • Понимание работы радиодеталей;
  • Умение паять.

Если это за гранью ваших знаний, то лучше отказаться от идеи сделать устройство своими руками и обратиться к готовым магазинным вариантам.

Иначе рекомендуется применить свои навыки на простейших схемах, например, на микроконтроллере К561ЛА7.

Упростить и усовершенствовать схему, придав ей большую надежность, можно следующим образом:

  1. Использовать резистор для понижения напряжения, а не конденсатор.
  2. Подобрать тиристор с запасом коммутируемой нагрузки, опираясь на фактическую мощность, которую потребляют все лампы.
  3. Правильно выбрать резисторы, от которых будет зависеть диапазон регулировки температурных значений.

После подбора составляющих частей можно приступать к сборке платы, согласно выбранной микросхеме.

Из термостата в терморегулятор

Термостат – это прибор, позволяющий поддерживать температуру на определенном уровне. Он входит в устройство предметов бытовой техники, работа которых основана на поддержании постоянной температуры посредством нагрева.

Для преобразования термостата в терморегулятор можно взять новый прибор или извлечь его из сломанной домашней техники.

Сборка схемы выполняется поэтапно:

  1. Подготовка термостата. Корпус наполняют специальным эфиром. Это позволяет повысить чувствительность термостата – цепь будет смыкаться и размыкаться от малейших температурных колебаний.
  2. Подключение реле регулятора. Термореле понадобится для точного измерения температуры воздуха. Оно помещается внутрь инкубатора.
  3. Подключение к сети питания. При осторожном извлечении термостата из оборудования к нему уже будет подведен шнур питания. Но если его нет, то его нужно припаять к устройству, иначе самодельный терморегулятор не сможет работать.
  4. Подключение регулировочного винта. Регулирование происходит с помощью винта. Он уже входит в состав термостата. По желанию или необходимости его можно заменить на более удобный.

После сборки самодельного терморегулятора проверяют его работоспособность. Для этого используют любую закрывающуюся емкость и термометр.

Если его показания совпадают со значениями, указанными на устройстве, то такой регулятор можно смело использовать для инкубации яиц.

Правила выбора

Выбирая устройство для выведения цыплят в инкубаторе, следуют следующим параметрам:

  • Надежность и устойчивость к перепадам напряжения;
  • Реакция на резкие перепады температуры и влажности окружающей среды;
  • Количество человеко-часов, которое необходимо потратить для работы терморегулятора в течение всего периода выведения птенцов;
  • Наличие табло для зрительного контроля за изменением климатических условий.

Надо быть готовым к тому, что за низкую цену получится приобрести простейший терморегулятор, требующий человеческого контроля, а полностью автономное устройство будет стоить дорого.

Источник: http://1kyra.ru/inkubatory/termoreguljator/

Терморегулятор для инкубатора своими руками: описание схемы простейшей конструкции

Терморегуляторы для инкубатора своими руками: схема, инструкция

Даже самый начинающий птицевод хорошо понимает: для получения наибольшей прибыли птенцов нужно выводить на собственном птичнике.

При наличии финансов процесс этот затруднений не вызывает, ведь сегодня в специализированных магазинах без труда можно приобрести самое разнообразное оборудование для инкубаторов. Но что делать, если бюджет еще неокрепшей птицефермы пока сильно ограничен?

Из подобных ситуаций всегда выходят одним способом: изготавливают все необходимое самостоятельно из подручных материалов. Система включает только один сложный компонент: устройство для поддержания температуры на заданном уровне. О том, как его сделать, мы и поговорим в статье, тема которой – терморегулятор для инкубатора своими руками.

Принцип работы

Работа термостата для инкубатора чрезвычайно проста и понятна даже школьнику.

Основными его элементами являются нагреватель, в качестве которого используется инфракрасный излучатель или группа ламп накаливания, и температурный сенсор.

По сигналу сенсора термостат подает питание на нагреватель либо отключает его, благодаря чему температура в инкубаторе поддерживается в требуемом диапазоне.

Следует учесть, что значения комфортных температур для каждого вида птицы несколько разнятся. Чтобы инкубатор получился универсальным, нужно предусмотреть возможность настройки желаемой температуры.

Также нельзя забывать о том, что система электроснабжения является наиболее уязвимой частью загородной инфраструктуры. Лед, шквальный ветер и падающие деревья могут оборвать провода и обесточить вашу птицеферму, испортив тем самым все дело.

Чтобы иметь возможность благополучно пережить аварию, необходимо оборудовать терморегулятор аккумулятором, на который он будет автоматически переключаться при отключении основного электроснабжения.

После возобновления работы электросети прибор должен снова зарядить подсевший аккумулятор – также автоматически.

Терморегулятор для инкубатора своими руками — схема

Термостат можно собрать, так сказать, с нуля, используя для этого различные радиотехнические детали.

Наибольшее признание у радиолюбителей получила схема на основе специального элемента, именуемого компаратором.

Компаратор имеет две пары входных контактов и одну выходную. Одна из входных пар называется прямой (помечается знаком «+»), вторая – инверсной (знак «-»).

Функция компаратора заключается в сравнении уровня напряжения на входных контактах. Если напряжение на инверсном входе больше, чем на прямом, — на выходной паре микросхемы устанавливается высокий уровень.

При этом включается подключенное к ней реле, замыкая цепь нагревателя. Если для включения реле требуется больший ток, чем имеется в цепи терморегулятора, компаратор включает его через транзистор.

Как же формируются напряжения на входных контактах компаратора? Одно из них определяется пользователем, для чего в цепь терморегулятора включается переменный резистор. Меняя сопротивление резистора, пользователь фактически задает желаемую температуру.

Напряжение на втором входе зависит от состояния температурного сенсора. В этом качестве применяются различные элементы, характеристики которых меняются с изменением температуры. Например, термистор – резистор, сопротивление которого увеличивается при нагреве и падает при охлаждении (может быть и наоборот – зависит от типа элемента).

Силовая часть терморегулятора, то есть нагреватель, запитана от обычной электросети с напряжением в 220 В. На цепь управления следует подать постоянное напряжение в пределах 12 В, для чего применяется понижающий трансформатор с диодным мостом (выпрямитель) и стабилизатором.

Схема терморегулятора

Данную схему мы, как уже говорилось, дополним аккумулятором. В его цепь включим реле, контакты которого при наличии напряжения в централизованной электросети будут разомкнуты. При этом обогрев инкубатора будет осуществляться лампами на 220 В или таким же инфракрасным обогревателем.

При отключении основного электричества контакты реле в цепи аккумулятора замкнутся и электропитание будет поступать от него. При этом в качестве обогревателей будут использоваться автомобильные лампы.

Как только в основной электросети снова появится напряжение, реле разомкнет цепь аккумулятора, но второй парой контактов подключит зарядное устройство, которое восстановит заряд батареи до первоначального уровня.

Описание конструкции

Модуль управления терморегулятора должен быть помещен в какой-нибудь корпус.

Наилучшим образом для этого подходит старый, отслуживший свое электросчетчик.

Здесь найдется и плата, на которой можно разместить радиодетали, и катушка для изготовления понижающего трансформатора.

Кроме того, в электросчетчике имеется клеммник с розеткой, в который очень удобно включать провод от нагревателя.

Термодатчик помещают в стеклянную или термоусадочную трубку (предотвращает механические повреждения) и кладут прямо на лотки с яйцами.

Если в качестве обогревателя предполагается использовать лампы накаливания, то патроны для них лучше закрепить на алюминиевой пластине. Предварительно в ней придется просверлить несколько отверстий соответствующего диаметра.

Обычно нагреватель устанавливается под лотком с яйцами, при этом автомобильные лампы и обычные 220-вольтовые располагают вперемешку.

Если навыков радиолюбителя у вас нет, можно собрать примитивный терморегулятор, используя термостат от какого-нибудь ненужного или поломанного электроприбора. Лучшим «донором» является старый утюг. Извлеченный из него термостат промывают, заполняют эфиром и герметично запаивают. Эфир активно испаряется, поэтому работу с ним затягивать не следует.

Это вещество выбрано потому, что оно хорошо реагирует на колебания температуры изменением объема. Остается припаять к термостату регулируемый винт или пластину, которые при определенной температуре будут замыкать контакты в цепи нагревателя.

Выше было предложено использовать в качестве температурного сенсора термистор, но это не единственный вариант.

В принципе, в этом качестве может быть задействован любой полупроводниковый элемент, так как характеристики этих деталей всегда зависят от температуры.

Так, например, ток коллектора обычного биполярного транзистора при нагреве возрастает, что неминуемо отражается на работе усилительного каскада (транзистор перестает реагировать на входной сигнал из-за смещения рабочей точки).

Похожим образом реагируют на изменение температуры и кремниевые диоды. При температуре +25 градусов напряжение на контактах свободного диода составит около 700 мВ, а замеры на перманентном диоде покажут примерно 300 мВ. Если же температура будет повышаться, напряжение с каждым градусом будет падать примерно на 2 мВ.

Однако, у всех этих элементов есть существенный недостаток: собранные на их базе терморегуляторы с большим трудом приходится настраивать, иначе говоря, калибровать.

Ведь нам только приблизительно известно, какую элемент демонстрирует характеристику при той или иной температуре и как именно он реагирует на ее колебания.

Гораздо проще работать с выпускаемыми современной промышленностью термодатчиками, проходящими калибровку еще на стадии производственного процесса.

Сильного удорожания проекта покупка такой детали не вызовет. Так, например, аналоговый термодатчик марки LM-335 компании National Semiconductor стоит всего 1 доллар.

Можно использовать и его модификации – датчики LM-135 и LM-235, хотя они предназначены для применения, соответственно, в военной электронике и промышленности.

Датчик LM-335 содержит 16 транзисторов и работает подобно стабилитрону, у которого напряжение стабилизации находится в зависимости от температуры.

Только в данном случае все параметры досконально известны: на каждый градус по шкале абсолютных температур (Кельвина) приходится напряжение в 10 мВ или 0,01 В.

Таким образом, если мы хотим знать, каким будет напряжение стабилизации LM-335 при температуре 20 градусов Цельсия, нужно прибавить к этому значению 273 (перевод в градусы Кельвина), а затем результат умножить на 0,01 В.

В данном случае получим 2,93 В. На производстве датчик калибруется по температуре 25 градусов Цельсия.

Рабочий диапазон температур, в пределах которого напряжение меняется линейно и по указанному закону (10 мВ/градус) лежит в пределах от -40 до +100 градусов Цельсия.

Итак, зная точное напряжение стабилизации LM-335 при той или иной температуре, нам остается выставить соответствующее напряжение на втором входе компаратора – и настройка терморегулятора будет завершена.

  1. Схему на базе термодатчика LM-335 следует компоновать таким образом, чтобы через него протекал ток величиной от 0,45 до 5 мА. Отметим, что напряжение питания терморегулятора не обязательно должно составлять 12 В. Это значение было предложено только потому, что оно позволяет применить вместо самодельного блока питания (понижающий трансформатор + выпрямитель + стабилизатор) обычный адаптер, который можно недорого купить в магазине. Если же все делать самостоятельно, то понижающий трансформатор можно собрать в расчете на выходное напряжение в пределах 3 – 15 В. Главное, чтобы на такое же напряжение было рассчитано используемое в схеме реле.
  2. Далее подбирают сопротивление резисторов делителя напряжения и переменного резистора таким образом, чтобы при имеющемся напряжении сила протекающего через термодатчик тока находилась в указанных пределах. В принципе, датчик останется работоспособным и при силе тока свыше 5 мА, но тогда он будет сильно греться, из-за чего терморегулятор будет работать некорректно.
  3. В качестве компаратора можно применить микросхему того же производителя, выпускаемую под маркой LM-311 (модификации для «военки» и промышленности — соответственно, LM-111 и LM-211).

Используемое в схеме реле является многоконтактным (типа МКУ). В упрощенном исполнении (без аккумулятора) можно воспользоваться автомобильным реле. Важно удостовериться, что допустимая для данного реле величина силы тока соответствует мощности нагревателя.

Сборка и налаживание

При сборке терморегулятора необходимо обеспечить качественное соединение всех электроконтактов, особенно в силовой части.

При использовании термодатчика LM-335 или аналогичного ему (калиброванного) в настройке прибора, как уже отмечалось, нет необходимости.

Если же в качестве температурного сенсора применен термистор или какой-либо полупроводниковый элемент, то без наладки не обойтись. Удобнее всего осуществлять ее при помощи цифрового термометра, например, марки ТМ-902С.

Сенсоры термометра и терморегулятора нужно соединить при помощи скотча или изоленты и помещать в среды с различной температурой.

При этом каждый раз нужно постепенно менять сопротивление переменного резистора, пока устройство не сработает.

В этот миг нужно зафиксировать показания цифрового термометра и сделать напротив текущего положения ручки переменного резистора соответствующую пометку.

на тему

Источник: https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/termoregulyator-dlya-inkubatora-svoimi-rukami.html

Схема терморегулятора для инкубатора своими руками

Терморегуляторы для инкубатора своими руками: схема, инструкция

Приведенная ниже схема является развитием темы симисторного регулятора мощности. В данном случае добавляются термочувствительный и нагревательный элементы благодаря которым и поддерживается требуемая температура. Включая-отключая нагрузку, которой служит электронагреватель, терморегулятор регулирует температуру микросреды инкубатора, аквариума или другого замкнутого пространства.

Схема терморегулятора

  • R1 – 10 кОм;
  • R2 – 22 кОм;
  • R3 – 100 кОм;
  • R4 – 6,8 кОм;
  • R5 – 1 кОм;
  • R6 – 6,8 кОм;
  • R7 – 470 Ом;
  • R8 – 51 Ом;
  • R9 – 5,1 кОм;
  • R10 – 27 кОм 2Вт;
  • С1 – 0,33 мкФ;
  • DA1 – КР140УД6;
  • VT1 – КТ117;
  • VD1 – КС212Ж;
  • VD2 – КД105;
  • VS1 – КУ208Г.

Принцип работы терморегулятора

Итак, рассмотрим как работает схема терморегулятора для инкубатора своими руками: основой данного устройства является операционный усилитель DA1, работающий в режиме компаратора напряжений.

На один вход подается изменяющееся напряжение с терморезистора R2, а на второй, задаваемое переменным резистором R5 и подстроечным R4. Для точной и грубой регулировки. В зависимости от области применения, подстроечный резистор можно и исключить.

При равенстве входных напряжений транзистор VT1, управляемый выходом компаратор – закрыт, на управляющем электроде VS1 ноль, а значит закрыт и симистор. При изменении температуры меняется сопротивление R2, а на разницу напряжений на входах компаратор отреагирует подачей открывающего сигнала на VT1.

Появившееся на R8 напряжение откроет тиристор, пустив через нагрузку ток. Когда напряжения на входах операционного усилителя выравняются, он отключит нагрузку.

Питание управляющего каскада осуществляется через выпрямительный диод VD2 и гасящее сопротивление R10.

При его сверхмалом потреблении тока – это вполне допустимо, как и использование для стабилизации питающего напряжения всего одного стабилитрона VD1. К тому же, управляющие цепи запитываются через нагрузку, на которой тоже происходит падение напряжения, особенно в нагретом состоянии.

Замены деталей

Обратите внимание на мощность резистора R10 — 2Вт, так же этот резистор должен выдерживать мгновенное напряжение 400В, если такой резистор не удается найти, его можно заменить несколькими последовательно включенными резисторами на меньшую мощность и напряжение.В качестве стабилитрона VD1 можно установить BZX30C12 или любой другой стабилитрон на 12В близкий по параметрам.

Вместо VD2 можно поставить диод с обратным напряжением не менее 400В и током не менее 0,3А: например из серии 1N4004 — 1N4007

На место DA1 можно установить практически любой операционный усилитель, главное чтобы он работал в диапазоне питающих напряжений 10..15В.

А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм. В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы.

Области применения терморегулятора

В основном, данное устройство применялось для термостабилизации птичьих инкубаторов. Где в роли тэнов выступали маломощные электрические лампочки по 60 Вт, соединенные параллельно по 4, 6 и 8 штук, в зависимости от размеров инкубатора и количества инкубируемых яиц.

Как монтировать обогреватель для инкубатора

  • лампы должны быть равномерно расположены над поверхностью яиц, на расстоянии 25-30 см от их поверхности;
  • терморезистор должен находиться как можно ближе к поверхности яиц, но не касаться их;
  • использовать вместо лампочек можно и другие нагреватели, но с малой теплоемкостью, к примеру, вольфрамовую проволоку, натянутую на керамическую рамку в форме тетраэдра.

Обогреватель для аквариума

Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками.

Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе.

А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.

Особенности монтажа

  • из-за инертности воды, датчик и обогреватель должны быть разнесены, но в пределах прямой видимости (без перекрытия растениями и элементами декора) друг от друга;
  • из-за электропроводимости воды, датчик должен быть изолирован, либо средствами с хорошей теплопроводностью, либо тонким слоем обычного герметика;
  • допускается использование как обычных аквариумных обогревателей, так и регулируемых, с выставленной на максимум температурой.

Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.

P.S.
Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.

Источник: http://HardElectronics.ru/sxema-termoregulyatora-dlya-inkubatora.html

Терморегулятор для инкубатора своими руками: простые и надежные схемы

Терморегуляторы для инкубатора своими руками: схема, инструкция

> Куры > Терморегулятор для инкубатора своими руками: простые и надежные схемы

Для того, чтобы вывести цыплят, крайне важно поддерживать температурный режим в инкубаторе. Даже непродолжительное охлаждение или же перегрев приведет к гибели эмбрионов.

Чтобы получить здоровое потомство, необходимо позаботиться о том, чтобы аппарат был оснащен качественным и надежным терморегулятором

. Проще всего, конечно же, приобрести этот элемент, но при желании можно сконструировать терморегулятор для инкубатора своими руками.

Разновидности терморегуляторов

Видов термостатов бывает несколько:

  • работающие от теплоносителей. Такие устройства в последнее время стараются не использовать, так как они не дают нужного эффекта и являются неэкономными;
  • функционирующие от внешнего или же внутреннего потока воздуха. Эти конструкции отличаются дешевизной и надежность. Они реагируют на поток воздуха, а не на подогрев воды. Да и в эксплуатации такие устройства гораздо удобнее.

Принцип действия

Терморегулятор – это устройство, предназначенное для осуществления контроля за поддержанием температурного режима. В случае каких-либо сбоев в инкубаторе он сразу же подает сигнал. С помощью данного устройства удается контролировать и уровень влажности.

Зачастую в качестве термостата в самодельных конструкциях выступает обычный градусник. Соответственно, птицевод оказывается вынужден практически все время находиться рядом с прибором. Даже незначительное изменение температур способно свести на ноль все труды.

С помощью терморегулятора удается контролировать все нагревательные элементы. При необходимости, он их автоматически отключает. Такой прибор обладает максимальной чувствительностью, а соответственно после его настройки фермеру уже не нужно участвовать в процессе контроля за температурой. В его обязанности с этого момента входит лишь изменение положения всех заложенных в инкубатор яиц.

Для того же, чтобы избежать проблем, связанных с перебоями электроэнергии, рекомендуется термостат дополнительно подсоединить к аккумулятору. Благодаря наличию этого элемента прибор будет работать независимо от того, поступает питание от сети или нет. Соответственно, риск гибели эмбрионов в данном случае сводится к нулю.

Как сделать терморегулятор: схема

Для того, чтобы самостоятельно собрать такое устройство, необходимо воспользоваться схемой. Рассмотрев ее внимательно сразу же становится понятно, что используются в данном случае исключительно распространенные радиодетали. Соответственно, проблем с поиском элементов для терморегулятора не возникнет.

Приобрести необходимо следующие радиоэлементы:

  • стабилитрон любой разновидности. С его помощью удастся обеспечить стабильное напряжение, которое будет выдерживаться в пределах от семи до девяти Вольт;
  • пара транзисторов. Один – МП 42, а второй – КТ 315;
  • тиристор КУ 201 – КУ 202, буква должна быть Н;
  • четыре КД 202 диода, буквенное обозначение НС или Н;
  • резистор с сопротивлением не менее 30 и не более 50 кОм;
  • резистор R5 с рассеваемой мощностью от 2 Ватт и несколько резисторов по 0,5 Ватт;
  • реле типа МКУ и транзистор VT1.

Работа терморегулятора настроена таким образом, что при отключении его от сети происходит замыкание контактов реле и подключение аккумулятора с автомобильными лампами. Когда же подача напряжения возобновляется, реле сразу же срабатывает и подключается вторая пара контактов, необходимых для зарядки аккумулятора. Порог температуры устанавливается переменным резистором.

Важно! Работать с электроприборами нужно строго в соответствии с правилами, так как находятся они под напряжением 220 Вольт.

Терморегулятор для инкубатора из утюга: пошаговая инструкция

Чтобы собрать такой нехитрый прибор не понадобятся никакие чертежи и схемы. Весь рабочий процесс удастся описать всего несколькими этапами:

  1. Прежде всего необходимо разобрать старый утюг или любой другой старый нагревательный прибор и достать из него термостат.
  2. Хорошо промыть извлеченную деталь или распаять. Этот процесс необходим для того, чтобы вывести прибор из строя.
  3. В качестве наполнителя использовать эфир, обладающий свойством испаряться за счет невысокой удельной теплоты образования пара.
  4. Термостат заполнить эфиром и после этого запаять. В результате таких действий появляется устройство, отменно реагирующее на колебания температур. Даже при незначительных изменениях прибор будет сразу же сужаться или становиться шире.
  5. В завершение необходимо винтами к терморегулятору прикрепить пластины.

В процессе расширения устройства, заблаговременно наполненного эфиром, пластины, выполняющие роль контактов, будут размыкаться. Воздух в инкубаторе при этом уже перестанет нагреваться. Если же температура понизится, то прибор в объеме уменьшится, а соответственно пластины замкнутся и начнется процесс нагрева.

Стоит также учитывать, что перед тем, как устанавливать регулятор температур, его необходимо настроить. С этой целью контакты устанавливают на определенном расстоянии, добиваясь максимальной чувствительности. Прибор должен реагировать даже на незначительные изменения температуры воздуха, буквально на доли градусов.

Цифровой терморегулятор: как сделать самостоятельно

Такой прибор изготовить совсем не сложно. Для этого лишь нужно воспользоваться схемой. Процесс сборки и наладки при этом не вызовет особых трудностей.

В работе понадобятся такие материалы и инструменты:

  • отвертка, паяльник и увеличительное стекло;
  • плоскогубцы и медная проволока;
  • изолирующая лента;
  • фольгированный текстолит;
  • светодиоды и лампочки;
  • плата и полупроводниковые элементы;
  • электронные детали (стабилитроны и транзисторы, а также тиристор, терморезистор).

Для того же, чтобы прибор оказался оснащен микроконтроллером и вентилятором, понадобятся еще и ряд других материалов:

  • красные светодиоды стандартного типа;
  • дисплей;
  • внутренний генератор на 4 МГц;
  • кнопки.

Этапы работы:

  1. Прежде всего нужно проложить дорожки на схеме. Делать это необходимо максимально аккуратно и не спеша, строго придерживаясь чертежа.
  2. Терморезистор, напряжение которого не менее 1 kOm и не более 15 kOm поместить внутрь инкубатора таким образом, чтобы он оказался в подвешенном положении.
  3. Нагреватель подключить в цепь тиристора. Обусловлен данный процесс тем, что при смене напряжения, которое напрямую зависит от падения температуры, оказывается воздействие на транзисторы. Нагреватель будет работать до того момента, пока в термодатчике напряжение не вернется в исходное положение.
  4. Дополнительно настроить датчики. При резких перепадах температуры воздуха окружающей среды, крайне важно осуществлять контроль за процессом нагрева в инкубаторе.
  5. Связать микроконтроллер с датчиком температур и обеспечить при этом выходы портов, необходимых для тех светодиодов, которые связаны с генератором.

Когда питание будет подаваться на схему, светодиоды включатся и тем самым будут сигнализировать о том, что прибор работает.

Благодаря же наличию памяти в микроконтроллере, в случае сбоя установок удастся вернуть все те значения, которые были указаны изначально.

Соответственно, удается даже в форс-мажорных обстоятельствах не беспокоиться по поводу стабильности работы всей инкубационной системы.

Терморегулятор – одна из важнейших деталей инкубатора. Именно благодаря этому элементу удается избежать огромного количества проблем. Прибор настолько чувствителен, что реагирует даже на незначительные колебания температуры воздуха.

Для самостоятельного же изготовления такого устройства понадобятся лишь минимальные навыки и знания. Далеко не во всех случаях даже используются схемы.

Простые конструкции удается собрать из старых нагревательных приборов, которые уже давно не использовались в хозяйстве.

Внимание, только СЕГОДНЯ!

Источник: https://pticevodam.info/termoregulyator-dlya-inkubatora/

Терморегулятор для инкубатора своими руками: схема самодельного цифрового регулятора температуры, как сделать на микроконтроллере

Терморегуляторы для инкубатора своими руками: схема, инструкция

Регулятор температуры внутри автоматического инкубатора для яиц, независимо от того, как прибор изготовлен, самостоятельно или заводского производства, относится к одному из самых важных элементов этого изделия.

Природой предусмотрено, что для выведения молодняка птицы разных пород, нужны подходящие условия. Например, температура выведения гусиных яиц в инкубаторе, отличается от параметров выведения уток. Куриные яйца инкубируют при температуре 37,7°, гусиным нужна 38,8°.

Строить инкубаторы отдельно для каждой породы птиц нецелесообразно, поэтому в них предусмотрено регулирование и поддержание нужных условий с помощью терморегуляторов. Если принято решение о создании самодельного терморегулятора для инкубатора, отнеситесь к этому со всей серьёзностью.

Выполнить такую работу под силу тем, кто освоил азы радиоэлектроники, умеет обращаться не только с паяльником, но и измерительными приборами. Кроме того, в работе пригодятся навыки по изготовлению печатных плат, сборке и настройке радиоэлектронных устройств.

В этой статье мы постараемся рассказать о том, как можно самостоятельно изготовить и отрегулировать терморегулятор для инкубации яиц.

Выбор схемы регулятора

Если взять за основу для изготовления терморегулятора заводские изделия, можно столкнуться с непреодолимыми трудностями по сборке, а особенно по настройке таких изделий.

Чтобы обойти лишние проблемы, лучше всего выбрать схему изделия доступную для изготовления в домашних условиях.

Важно: внимательно изучите описание конструкции выбранного устройства, особенно её элементную базу. Простая на вид схема может содержать дефицитные радиокомпоненты.

Главным критерием для любого типа терморегуляторов является обеспечения высокой чувствительности к перепадам внутренней температуры внутри инкубатора, а также мгновенное реагирование на эти изменения. «Самодельщики» в большинстве случаев применяют два варианта построения регуляторов:

  1. Построение прибора на основе электрической схемы и радиодеталей. Способ сложный и доступный для подготовленных специалистов;
  2. Изготовление регулятора на основе термостата от бытовой техники.

Давайте кратко рассмотрим оба варианта изготовления.

Изготовление терморегулятора на основе схемы и радиодеталей

На рисунке ниже показана принципиальная схема самодельного регулятора температурного режима при инкубации.

Если внимательно рассмотреть схему этого прибора, то можно убедиться, то для его сборки требуются широко распространённые радиокомпоненты.

Внимание: все элементы находятся под напряжением сети 220 Вольт, поэтому требуется строгое соблюдение правил техники безопасности при работе с электроприборами.

Если вы хотите узнать узнать, сколько яиц несет перепелка в день , то советуем прочитать статью: //6sotok-dom.com/uchastok/ferma/skolko-yaits-neset-perepelka.html

Для самостоятельного изготовления прибора потребуется приобрести следующие радиодетали:

  • Стабилитрон любого типа, который сможет обеспечить стабилизацию напряжения в пределах 7-9 Вольт;
  • Два транзистора, один из них из МП 42 с любой буквой или аналогичный ему, второй из серии КТ 315, буквенный индекс прибора может быть любой;
  • Тиристор из серии КУ 201-КУ 202, буква в обозначении должна быть Н;
  • Четыре диода серии КД 202, желательно с буквенными обозначениями Н или НС. Можно использовать и другие полупроводниковые приборы, при условии их допустимой мощности не менее 600 Вт;
  • Регулировка режима производится переменным резистором любого типа сопротивлением от 30 до 50 кОм;
  • Резистор R5 должен иметь рассеиваемую мощность не менее 2Вт, остальные по 0,5 Вт;
  • Также нужно приобрести реле типа МКУ (многоконтактное унифицированное).

В схеме, представленной на рисунке, датчиком температуры выступает транзистор VT1, который размещают в стеклянной трубке и укладывают непосредственно на лоток с яйцами. При включении регулятора в сеть, срабатывает реле, его контакты размыкаются и инкубатор обогревается от ламп, которые подключаются к сети 220 Вольт.

При отключении от сети, контакты реле замыкаются и подключают в работу аккумулятор и автомобильные лампы для обогрева.

При возобновлении подачи напряжения, реле снова срабатывает и подключает второй парой контактов зарядное устройство для подзаряда аккумулятора. Переменным резистором устанавливается порог требуемой температуры.

Особых требований к зарядному устройству нет, можно использовать любое имеющееся в наличии.

Термостат в качестве регулятора

Этот вариант более прост в изготовлении и в то же время весьма надёжен в эксплуатации. Для его изготовления потребуется найти любой термостат от бытовой техники, например, от утюга.

Его нужно определённым образом подготовить к работе. Для этого любым доступным способом наполняют корпус термостата эфиром и хорошо запаивают.

Важно знать: эфир сильное летучее вещество, поэтому работать с ним нужно быстро и аккуратно.

Эфир очень чутко реагирует на малейшее изменение наружной температуры, что приводит к изменению состояния корпуса термостата. Винт, который припаян к корпусу, жёстко связан с контактами. В нужный момент происходит включение или отключение нагревательного элемента. Нужную температуру выставляют при вращении регулировочного винта (под номером 6 на рисунке).

Также предлагаем вам прочитать о разведении индоуток в следующей статье: //6sotok-dom.com/uchastok/ferma/razvedenie-indoutok.html

Обращаем Ваше внимание, что перед закладкой яиц, нужно произвести настройку нужной температуры и прогреть инкубатор.

Итак, как видно из описания, изготовить терморегулятор в инкубатор не сложно. Это может выполнить даже школьник, который увлекается радиоэлектроникой. Схема не содержит дефицитных радиокомпонентов. Элементы устанавливают на печатную плату или монтируют навесным монтажом.

Если самостоятельно изготавливается «электрическая наседка», полезно для увеличения процентов вывода молодняка птицы, предусмотреть устройство для автоматического поворота яиц в инкубаторе.
Из этого видео Вы узнаете как сделать терморегулятор для инкубатора своими руками:

Источник: https://6sotok-dom.com/uchastok/ferma/termoregulyator-dlya-inkubatora-svoimi-rukami.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.