+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Пределы огнестойкости. Огнестойкие материалы и конструкции

Содержание

Предел огнестойкости конструкции

Пределы огнестойкости. Огнестойкие материалы и конструкции

Предел огнестойкости конструкции (заполнения проемов противопожарных преград) — промежуток времени от начала огневого воздействия в условиях стандартных испытаний до наступления одного из нормированных для данной конструкции (заполнения проемов противопожарных преград) предельных состояний.

Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний. Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:

  1. потеря несущей способности(R);
  2. потеря целостности(E);
  3. потеря теплоизолирующей способностивследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

Предел огнестойкости для заполнения проемов в противопожарных преградах наступает при потере целостности (E), теплоизолирующей способности (I), достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S)

Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности.

Условные обозначения пределов огнестойкости строительных конструкций содержат буквенные обозначения предельного состояния и группы.

Знак предела огнестойкости строительной конструкции состоит из условных обозначений, нормируемых для данной конструкции предельных состояний и цифры, соответствующей времени достижения одного из этих состояний (первого по времени) в минутах. Напр.

REI 30 – предел огнестойкости 30 мин – по потере несущей способности, целостности и теплоизолирующей способности независимо от того, какие из трёх предельных состояний конструкции I огнестойкости наступит ранее.

Для нормирования пределов огнестойкости несущих и ограждающих конструкций используют следующие предельные состояния:

  • для колонн, балок, ферм, арок и рам— только потеря несущей способности конструкции и узлов — R;
  • для наружных несущих стен и покрытий— потеря несущей способности и целостности — R, E, для наружных ненесущих стен — E;
  • для ненесущих внутренних стен и перегородок— потеря теплоизолирующей способности и целостности — E, I;
  • для несущих внутренних стен и противопожарных преград— потеря несущей способности, целостности и теплоизолирующей способности — R, E, I

Фактический предел огнестойкости определяют как правило расчетным путем, но для типовых конструкций могут применяться и экспериментальные методы определения фактического предела огнестойкости.

Предел огнестойкости металлических конструкций

Пределы огнестойкости большинства незащищенных металлических конструкций очень малы и находятся в пределах: (R10 — R15) для стальных конструкций; (R6 – R8)* для алюминиевых конструкций.

Исключение составляют колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать R 45, но применение таких конструкций в строительной практике встречается крайне редко.

Несмотря на то, что металл материал негорючий, при нагреве он теряет прочность, поэтому металл имеет низкий предел огнестойкости.

В случаях, когда минимальный требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) указан R 15 (RE 15, REI 15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости несущих элементов здания по результатам испытаний составляет менее R 8 (п. 5.4.2 СП 2.13130.2009)

Если возникает необходимость обеспечить огнестойкость металлических конструкций зданий выше, чем R15, то применяют различные способы повышения огнестойкости этих конструкций, например, окраска огнезащитными составами или облицовка защитными огнестойкими материалами.

В качестве облицовок могут быть использованы бетонные плитки, керамические материалы, штукатурка и т.п. Например, слой штукатурки в 2,5 см повышает предел огнестойкости металлических конструкций до R50. Облицовка в 0,5 кирпича повышает предел огнестойкости металлических конструкций до R 300.

Огнезащитные покрытия при воздействии высокой температуры вспучиваются и теплоизолируют металлическую поверхность. Например, слой такой обмазки толщиной 2-3 мм при воздействии высоких температур вспучивается и на некоторое время создает на поверхности защищаемой металлической конструкции слой пористого материала, толщиной 25-35 мм.

Данный способ огнезащиты позволяет увеличить огнестойкость металлических конструкций до величин R45-R60.

Предел огнестойкости деревянных конструкций

В отличие от металла дерево является горючим материалом, поэтому пределы огнестойкости деревянных конструкций зависят от двух факторов: времени от начала воздействия пожара до воспламенения древесины и времени от начала воспламенения древесины до наступления того или иного предельного состояния конструкции:

τ= τ воспл+ τ гор

Скорость уменьшения рабочего сечения деревянных конструкций на пожаре составляет от 0,6 до 1,0 мм/мин, поэтому деревянные конструкции, особенно с массивным сечением могут иметь достаточно большие значения пределов огнестойкости.

Конечно необходимо учитывать, что с уменьшением сечения уменьшается прочность конструкции и если брус был нагружен на 90%, то и предел огнестойкости будет низким, если на 10%, то чтобы произошло разрушение нужно больше времени.

Традиционным способом повышения огнестойкости деревянных конструкций является нанесение штукатурки. Слой штукатурки толщиной 2 см на деревянной колонне повышает ее предел огнестойкости до R 60.

Эффективным способом огнезащиты деревянных конструкций являются разнообразные краски вспучивающиеся и невспучивающиеся, а также пропитка антипиренами.

Необходимо обращать внимание на обеспечение достаточной огнестойкости деревянных конструкций, имеющих узлы крепления, опоры, затяжки, армирование из металлических элементов.

Предел огнестойкости железобетонных конструкций

Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, геометрии, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона, и его влажности и др.

В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило: а) за счет снижения прочности бетона при его нагреве; б) теплового расширения и температурной ползучести арматуры; в) возникновения сквозных отверстий или трещин в сечениях конструкций; г) в результате утраты теплоизолирующей способности.

Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости в условиях стандартных испытаний обычно находится в пределах R45-R90.

Столь малое значение пределов огнестойкости изгибаемых элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры.

Огнестойкость сжатых железобетонных элементов исчерпывается при пожаре за счет снижения прочности поверхностных, наиболее прогреваемых слоев бетона и сопротивления рабочей арматуры при нагреве.

Это приводит к быстрому снижению несущей способности конструкции при пожаре.

В момент времени воздействия пожара, когда несущая способность конструкции снизится до уровня рабочих нагрузок, и наступит ее предел огнестойкости по признаку «R».

Для железобетонных колонн предел огнестойкости обычно находится в пределах R90-R150.

При необходимости увеличения пределов огнестойкости железобетонных конструкций рекомендуется следующие мероприятия:

— увеличение толщины защитного слоя бетона;

— облицовка негорючими материалами;

— снижение пожарной нагрузки в помещении;

— снижение механической нагрузки на конструкцию;

— применение рабочей арматуры с более высокой критической температурой прогрева при пожаре.

В настоящее время если подбирать материал по пределу огнестойкости, то лучше всего применять железобетонные конструкции т.к. они имеют достаточно большой предел огнестойкости даже без дополнительных мероприятий и соответственно будут стоить дешевле.

Требуемый предел огнестойкости

Требуемый предел огнестойкости конструкции устанавливается согласно таблице 21, 23, 24 ФЗ 123 в зависимости от степени огнестойкости здания и типа конструкции, либо прописывается в СТУ, если они разрабатываются для конкретного сооружения.

Таблица 21. Соответствие степени огнестойкости и предела огнестойкости строительных конструкций зданий, сооружений и пожарных отсеков

СтепеньПредел огнестойкости строительных конструкций
огне-стойкостизданий, сооруженийНесущие стены, колонны и другиеНаружные ненесущие стеныПерекры-тия между-этажные (в том числеСтроительные конструкции бесчердачных покрытийСтроительные конструкции лестничных клеток
и пожарных отсеков *несущие элементычердачные и над подва-лами)настилы (в том числе с утепли-телем)фермы, балки, прогонывнутрен-ние стенымарши и площадки лестниц
________________* Наименование графы в редакции, введенной в действие с 12 июля 2012 года Федеральным законом от 10 июля 2012 года N 117-ФЗ..
IR 120Е 30REI 60RE 30R 30REI 120R 60
IIR 90Е 15REI 45RE 15R 15REI 90R 60
IIIR 45Е 15REI 45RE 15R 15REI 60R 45
IVR 15Е 15REI 15RE 15R 15REI 45R 15
Vне норми-руетсяне норми-руетсяне норми-руетсяне норми-руетсяне норми-руетсяне норми-руетсяне норми-руется

Таблица 23. Пределы огнестойкости противопожарных преград

Наименование противопожарных преградТип противо-пожарных преградПредел огнестойкости противо-пожарных преградТип заполнения проемов в противо-пожарных преградахТип тамбур-шлюза
Стены1REI 15011
2REI 4522
Перегородки1EI 4521
2EI 1532
Светопрозрачные перегородки с1EIW 4521
остеклением площадью более 25 процентов2EIW 1532
Перекрытия1REI 15011
2REI 6021
3REI 4521
4REI 1532

Таблица 24. Пределы огнестойкости заполнения проемов в противопожарных преградах

Наименование элементов заполнения проемов в противопожарных преградахТип заполнения проемов в противопожарных преградахПредел огнестойкости
Двери (за исключением дверей с остеклением более 25 процентов и1EI 60
дымогазонепроницаемых дверей), ворота,2EI 30
люки, клапаны, шторы и экраны3EI 15
Двери с остеклением более 25 процентов1EI W 60
2EI W 30
3EI W 15
Дымогазонепроницаемые двери (за1EIS 60
исключением дверей с остеклением более2EIS 30
25 процентов)3EIS 15
Дымогазонепроницаемые двери с1EIWS 60
остеклением более 25 процентов,2EIWS 30
шторы и экраны3EIWS 15
Двери шахт лифтов (при условии, что к ним устанавливаются требования по пределам огнестойкости)2EI 30 (в зданиях высотой не более 28 метров предел огнестойкости дверей шахт лифтов принимается Е 30)
(Строка в редакции, введенной в действие с 30 июля 2021 года Федеральным законом от 29 июля 2021 года N 244-ФЗ.
Окна1Е 60
2Е 30
3Е 15
Занавесы1EI 60

Литература:

Ройтман В.М. Инженерные решения по оценке огнестойкости проектируемых и реконструируемых зданий. М., Ассоциация «Пожнаука», 2001.

Источник: http://buildingbook.ru/pred_ognest.html

Что понимают под огнестойкостью материалов

Пределы огнестойкости. Огнестойкие материалы и конструкции

Способность зданий сопротивляться действию очагов пламени интересуют широкий круг лиц: архитекторов, инженеров-проектировщиков, строителей, инженеров по эксплуатации, учредителей и руководителей организаций, обычных граждан.

Ключевую роль в обеспечении безопасности играет огнестойкость строительных материалов. Этот основополагающий фактор должен обязательно учитываться на стадии разработки проектов и всех этапах строительства, от закладки фундамента до проведения заключительных отделочных работ.

К вопросу о терминах

Требования к обеспечению противопожарной безопасности регламентированы Федеральным законодательством, в тексте статьи 13 которого приведена классификация по степени опасности.

Пожарная опасность включает все характеристики материалов, описывающие возможность возникновения пожара или взрыва. Гарантией сохранности здания является огнестойкость конструкций, требования к которым указаны в СНИПе.

Для основной части населения – строителей, покупателей материалов – терминологические нюансы не существенны. Главное, чтобы сооружения не подвергались действию огня, были к нему устойчивы.

В прайсах торговых компаний, в обиходе широко применяется термин «огнестойкость» по отношению как к конструкциям, так и к материалам. Термин удобен для восприятия обычными людьми.

Степень огнестойкости материалов для большинства потребителей является главным критерием безопасности, определяет выбор строительной продукции.

Классификация

В основу классификации взяты свойства, обуславливающие склонность строительных материалов к возгораемости и развитию пожаров.

Эти качества обусловлены составом, структурой, технологией производства, использованием кроме базового сырья сопутствующих компонентов для получений конечной продукции. Опасность по отношению к пожарам определяется перечнем следующих свойств:

  • горючестью;
  • склонности к воспламенению;
  • интенсивностью распространения пламени по характеризуемой поверхности;
  • способностью образовывать дым;
  • токсичностью.

Показатели огнестойкости различных материалов представляют в виде таблиц.

Степень огнестойкости зданияПредел огнестойкости строительных конструкций, не менее
Несущие элементы зданияНаружные ненесущие стеныПерекрытия междуэтажные (в том числе чердачные и над подвалами)Элементы бесчердачных покрытийЛестничные клетки
Настилы (в том числе с утеплителем)Фермы, балки, прогоныВнутренние стеныМарши и площадки лестниц
IR 120Е ЗОREI 60RE 30R ЗОREI 120R 60
IIR 90Е 15REI 45RE 15R 15REI 90R 60
IIIR 45Е 15REI 45RE 15R 15REI 60R 45
IVR 15Е 15REI 15RE 15R 15REI 45R 15
VНе нормируется

Степень горючести

В целом, все стройматериалы подразделяют на негорючие (аббревиатура НГ) и горючие (аббревиатура Г). Согласно государственному стандарту группа горючих материалов подразделяется на подгруппы со следующими уровнями горючести:

  • Г1 – слабым,
  • Г2 – умеренным,
  • Г3 – нормальным,
  • Г4 – сильным.

Подобное подразделение имеет место также по признаку воспламеняемости. Материалы подгруппы В1 воспламеняются с трудом, В2 – умеренно, В3 – легко.

Для обеспечения безопасности здания в целом важна способность материалов к распространению пламени по всей поверхности.

Представители, обозначаемые как РП1 не склонны распространять огонь; РП2 – делают это в слабой мере; РП3 – умеренно; РП4 – сильно.

Эта характеристика важна для материалов кровли, полов, напольных покрытий. Для остальных видов показатель не определяют.

Образование дыма и токсичность

При возникновении первых признаков пожара люди могут и должны оперативно начать эвакуацию, для успешности которой важно количество выделяющегося дыма в помещениях.

По склонности к образованию дыма материалы, используемые в строительстве, подразделяются на три подгруппы. Представители первой (Д1) выделяют мало дыма; второй (Д2) – умеренно; третьей (Д3) – много.

Помимо дыма горение сопровождается образованием продуктов разных степеней токсичности. Материалы подгруппы Т1 – обладают малой опасностью, Т2 – умеренной, Т3 – высокой опасностью; Т4 – чрезвычайно опасны для окружающих.

По совокупности перечисленных качеств горючие материалы делят на 5 классов: от КМ 1 до КМ5. Представители группы КМ1 имеют минимальные значения всех показателей, КМ5 – максимальную пожарную опасность в соответствии с принадлежностью к подгруппам высоких степеней риска по всем характеристикам.

Негорючие строительные материалы принято обозначать сокращением КМ0.

Особенности популярных материалов

Абсолютной стойкостью к огню характеризуется минеральное сырье. Негорючими свойствами и высокой степенью огнеупорности обладают природный камень, большинство используемых в строительстве металлов, кирпич, бетонные смеси, асбоцементы, материалы из стекла.

Материалы, содержащие органические компоненты, без специальной термозащитной обработки могут стать источником опасности при появлении неподалеку очагов возгорания. Каждый вид продукции имеет сертификат, в котором указана конкретные показатели, принадлежность к той или иной группам риска.

Гипсокартон

Плиты из разных видов гипсокартона используются очень часто при проведении отделочных работ, перепланировках помещений. Стандартное гипсокартонное полотно выдерживает непосредственный контакт с открытым огнем в течение 20 минут, после чего может начаться процесс его разрушения.

Даже в самых жестких условиях материал не образует дыма, не выделяет ядовитые вещества, не дает распространяться языкам пламени по поверхности. Это позволяет относить гипсокартон к негорючей продукции.

Сэндвич панели и ПВХ сайдинг

Многослойные панели в виде сэндвичей делают из разного сырья. Отличается природа используемых утеплителей: минеральные ватные материалы, пенные продукты из полистирола или полиуретана, стекловолокна, комбинированные композиты.

Облицовка выполняется также из различных материалов: металла с полимерным верхним слоем, гипсокартонных полотен, ПВХ, плит из древесины, плотных листов бумаги, покрытых пленкой из полиэтилена или алюминиевой фольгой.

Характеризовать огнестойкость сэндвич панелей в целом не представляется возможным; нужно посмотреть — из чего они сделаны, проверить сертификат. Например, панель из стального листа и полиуретановым утеплителем с толщиной 150 мм выдержит действие пламени на протяжении 45 минут.

Поливиниловый сайдинг горит умеренно, следовательно, если открытый огонь находится в непосредственном контакте, материал сначала расплавится, затем может воспламениться.

Дополнит характеристику информация о принадлежности поливинилхлорида к классу КМ3. Материал способен затухать самостоятельно, но если действие пламени, высоких температур не прекращается, а усиливается — ПВХ панели могут загораться, выделяя при этом дым и токсичные продукты.

СИП панели

Структурная изоляционная панельная продукция (СИП) представляет собой две плиты из ориентированных стружечных материалов (ОСП) между которыми размещается пенополистирол.

Конструкция скреплена клеем из полиуретана. Стружечные плиты делают на цементной или древесной основе. Цементная модифицикация СИП панелей обладает максимальной пожарной безопасностью, можно сказать огнестойкостью. Облицовка из древесной стружки менее устойчива к действию пламени.

Пенополистирол

Вспененный полимер из стирола – типичный синтетический органический продукт, который без специальной обработки является опасным по отношению к пожарам материалом.

Современные полистирольные изделия научились делать более стойкими к огню, но количество образующегося дыма, токсичность выделяемых веществ снизить не удалось.

Поэтому если из пенополистирола делают облицовку, то между органическими плитами обязательно располагают минеральные швы из неорганической ваты.

Газо и пенобетон

Прекрасной огнестойкостью обладают газо и пенобетонные материалы. Они, практически, не горят вообще. Даже при действии открытого огня стены из таких бетонных плит выдержат 180 минут, не претерпевая разрушений, не образуя дыма и токсичных газов.

Монтажная пена

Для герметизации швов в процессе проведения монтажных работ часто применяют монтажные пены, сделанные из вспенивающегося полиуретана. Полимер имеет разные присадки, потому значительно отличается по пожарной безопасности.

Максимальную стойкость к огню имеет продукция с обозначением В1; минимальной безопасностью характеризуется пенный герметик с аббревиатурой В3. Швы пониженной огнестойкости нужно защищать нанесением штукатурки или шпатлевки из гипса.

Поликарбонат

Сотовый пластик имеет минимальную горючесть и склонность к распространению огня, умеренную воспламеняемость. Интенсивность выделения дыма и токсичность продуктов горения радуют меньше.

По этим показателям поликарбонат относится к третьей подгруппе. В целом, для монтажа конструкций из сотовых листов запретов нет, а при установке покрытий на больших площадях нужно произвести расчеты суммарного эффекта.

Ондулин

Материал сделан на основе картона с битумной пропиткой, со всеми вытекающими из этого последствиями. Несмотря на присутствие минеральных наполнителей, ондулин характеризуется высоким уровнем опасности при пожарах, не отличается огнестойкостью. Кровля из него сгорает очень быстро.

Методы испытаний

Согласно требованиям СНИПа строительные материалы характеризуют степенью пожарной опасности, для определения которой проводят испытания отдельных показателей. Каждый параметр (горючесть, скорость распространения пламени, все остальные параметры) определяют по методикам ГОСТов.

Испытания проходят кровельные, теплоизоляционные, облицовочные, гидро- и пароизоляционные материалы, покрытия пола. Методики определения содержат единые стандартизированные подходы; результаты показателей проверяют на воспроизводимость и заносят в сертификаты.

Защитная обработка

Для повышения огнестойкости строительных материалов используют разные приемы, самым простым из которых является нанесение плотного слоя штукатурки.

Можно проводить глубокую пропитку продукции с хорошей адсорбцией антипиреновыми составами, покрывать поверхности негорючими вспучивающимися композитами.

Выбор способов защиты определяется конкретными ситуациями, характером материала, финансовыми возможностями, условиями будущей эксплуатации зданий.

Загрузка…

Источник: https://ProtivPozhara.com/zaschita/teorija-stojkosti/ognestojkost-strojmaterialov

Огнестойкость строительных конструкций и методы ее повышения

Пределы огнестойкости. Огнестойкие материалы и конструкции

Одним из важнейших параметров пожаробезопасности зданий, сооружений и инженерных коммуникаций является предел их огнестойкости. Данный показатель выражается периодом времени, в течение которого конструкция приобретает признаки нормируемых предельных состояний в условиях пожара, а именно:

  • потеря несущей способности (обозначается R, указывается в минутах);
  • нарушение целостности (Е, мин.);
  • потеря теплоизоляционных характеристик (I, мин.)

Огнестойкость различных конструкций

Пределы огнестойкости R, E, I для различных видов конструкций регламентируются [1], [2] и могут находиться в пределах от 15 до 150 минут.

В том числе, несущие элементы должны обладать степенью огнестойкости от R15 до R120, наружные ограждающие конструкции RE15-RE30, перекрытия REI15-REI60, внутренние перегородки REI45-REI120, лестничные площадки и марши R30-R60.

Для сооружений повышенной ответственности могут требоваться более высокие пределы огнестойкости, например, для подземных сооружений эти показатели могут превышать 180 минут.

Огнестойкость различных материалов

Основными материалами, из которых изготавливаются строительные конструкции являются сталь, бетон (железобетон) и древесина. Каждый из этих материалов в незащищенном виде имеет свои пределы огнестойкости.

Металлоконструкции в незащищенном виде характеризуются наименьшими показателями огнестойкости. Этот показатель зависит от показателя приведенной толщины металла: при толщине 5 мм предел огнестойкости составляет 9 минут, при толщине 15 мм – 18 минут.

Нормативная документация [1] [2] допускает использование конструкций из незащищенного металла в случаях, когда требования к ним по пределу огнестойкости R, E, I не превышают 15 минут.

В иных случаях для повышения предела огнестойкости металла должна выполняться огнезащитная обработка.

Деревянные конструкции, используемые в современном строительстве, как правило, имеют заводские пропитки, снижающие их горючие свойства. Однако, пределы их огнестойкости, определяемые с учетом скорости обугливания в условиях пожара, характеризуются низкими показателями. Современные конструкции из клееной древесины имеют предел огнестойкости 30-45 минут.

Бетонные (железобетонные) конструкции имеют высокий предел огнестойкости,  показатель которого зависит от толщины защитного слоя бетона и конструктивных особенностей элементов. Как правило, дополнительной огнезащиты требуют пустотные и ребристые плиты, тонкослойные панели, элементы, армированные внешним способом, а также конструкции, выполненные из полимербетона.

Эти материалы по-разному ведут себя в условиях пожара. Например, в древесине протекают процессы термического разложения, в результате которого образуется пористый кокс.

При этом снижается жесткость и прочность конструкции. Металл под воздействием высоких температур переходит в пластичное состояние. Бетон снижает свои характеристики в процессе дегидратации.

Влажный бетон в условиях пожара подвергается взрывообразному разрушению.

Методы повышения предела огнестойкости

Для повышения предела огнестойкости конструкций и доведения его до заданных параметров в строительстве используются различные огнезащитные материалы. Они позволяют блокировать поверхность защищаемой конструкции от высокотемпературного воздействия огня и сохранять ее в рабочем состоянии в течение требуемого периода времени. Огнезащитные покрытия используются для обработки:

  • строительных конструкций, предел огнестойкости которых регламентируется нормативной документацией, в том числе – колонн, рам, ферм, балок, плит покрытия, междуэтажных перекрытий;
  • воздуховодов и газоходов, к которым предъявляются соответствующие требования;
  • кабельных разводок, проходок через ограждающие конструкции огнестойкого типа;
  • емкостей для хранения нефтепродуктов, легковоспламеняющихся и горючих жидкостей.

Увеличение предела огнестойкости различных конструкций может выполняться конструктивными методами или окраской. В том числе, используются:

  • штукатурка, отделка бетоном или кирпичом. Данный метод подходит для конструкций, допускающих дополнительное нагружение;
  •  облицовка специальными плитами, монтаж защитных экранов;
  • нанесение огнезащитных составов поверхностного типа;
  • пропитка конструкций из древесины;
  • комбинация нескольких методов.

Основные виды огнезащитных материалов

В состав огнезащитных систем могут входить: заполнители, стойкие к высоким температурам (вермикулит, керамзит, базальт и другие),  неорганические вяжущие (гипс, цемент и т.д.

), некоторые полимерные вяжущие и добавки, повышающие общую сопротивляемость системы воздействию огня, увеличивающие ее срок службы, прочность и другие технические характеристики.

Данные материалы могут использоваться по отдельности (например, гипс, базальтовые волокна) или в комбинации друг с другом.

Действие покрытий вспучивающегося типа на базе органических вяжущих основано на образовании слоя пенококса. Под воздействием огня покрытие постепенно выгорает, продлевая работоспособность конструкции.

Покрытия на основе минеральных связующих позволяют блокировать тепловой поток за счет выделения массы пара из содержащейся в их составе связанной воды.

Данный процесс замедляет повышение температуры защищаемой конструкции.

Огнезащитные составы вспучивающегося типа на минеральном вяжущем одновременно выделяют при нагреве пар и увеличивают свою толщину, что позволяет противостоять воздействию огня более эффективно.

Пористые и волокнистые огнезащитные материалы, обладающие низкой теплопроводностью, монтируются конструкционным методом и способны поглощать теплоту, не изменяя своей исходной формы.

Огнезащитные материалы композиционного типа представляют собой конструкционные элементы, обладающие, при этом, эффектом терморасширения, что позволяет достичь максимального эффекта повышения огнестойкости.

Популярные огнезащитные материалы и составы, представленные на Российском рынке

В соответствии с требованиями нормативной документации (НПБ 236-97, НПБ 251-98 и другие) вся огнезащитная продукция, применяемая в строительстве, должна пройти испытания и иметь соответствующие сертификаты.

Сегодня на рынке РФ представлено множество отечественных и зарубежных материалов и составов, повышающих пределы огнестойкости стальных, деревянных и железобетонных конструкций.

Наиболее популярными являются следующие представители.

  • компания Promat, предлагающая огнезащиту различных типов для несущих металлических и деревянных конструкций, железобетона, кабельных каналов, воздуховодов, газоходов;
  • компания КРОЗ – производитель комплексных систем огнезащиты всех типов строительных конструкций и инженерных коммуникаций на базе окрасочных составов и конструкционных решений;
  • Огнеза – популярный отечественный производитель огнезащитных красок, лаков, пропиток, герметиков и конструкционных элементов на основе базальта. Компания выпускает материалы для защиты металла, дерева и воздуховодов, а также муфты и кабельные проходки;
  • корпорация ТехноНИКОЛЬ предлагает решения на базе каменной ваты для повышения предела огнестойкости стальных и железобетонных конструкций, профлиста и трубопроводов;
  • всемирно известный бренд ROCKWOOL предлагает фирменную огнезащитную систему ROCKFIRE на базе материалов из каменной ваты и специального клея. Компания предоставляет решения для защиты воздуховодов, кабельных каналов, проходок труб и кабелей через стены, огнестойкие кровельные системы, системы огнезащиты металлоконструкций, древесины и бетона;
  • Эковер – отечественная компания, выпускающая огнезащитные материалы конструкционного типа на базе базальтовых плит для повышения огнестойкости металла и железобетона до REI 240;
  • финская компания PAROC производит огнезащитные материалы на основе каменной ваты;
  • международная группа Saint-Gobain предлагает конструкционную огнезащиту Gyprock Glasroc F на базе плит, состоящих из гипса и стеклополотна. Используется для повышения огнестойкости металлоконструкций и облицовки ограждающих элементов зданий;
  • немецкая компания KNAUF реализует различные решения по огнезащите металлоконструкций и устройству противопожарных перегородок со степенью огнестойкости до R240 на базе обычных гипсовых листов, суперлистов, “аквапанелей” и плит “файерборд”;
  • HILTI – предоставляет решения по огнезащите кабельных проходов, противопожарные пены и герметики;
  • Walraven – производитель огнестойких крепежных систем, пен и герметиков для заделки пустот, противопожарных муфт и проходок для инженерных коммуникаций.

Литература:

[1]   СП 2.13130.2012 СИСТЕМЫ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ. ОБЕСПЕЧЕНИЕ ОГНЕСТОЙКОСТИ ОБЪЕКТОВ ЗАЩИТЫ

Источник: https://maistro.ru/articles/stroitelnyj-konstrukcii/ognestojkost-stroitelnyh-konstrukcij-i-metody-ee-povysheniya

Огнестойкость строительных конструкций и предел огнестойкости, основные характеристики материала

Пределы огнестойкости. Огнестойкие материалы и конструкции

Огнестойкость — это один из основных эксплуатационных показателей сооружения характеризующий способность несущих элементов, стен и перекрытий здания сопротивляться воздействию огня и высокой температуры во время пожара. Этот показатель является обязательным при проектировании сооружения.

На основании определения степени огнестойкости зданий и сооружений выполняют расчёты различных инженерных коммуникаций: электропроводки, газо и водопровода. Данный показатель является основополагающим для определения мощности, типа и структуры различных систем пожарной безопасности:

  • Сигнализации;
  • Установок и автономных модулей пожаротушения;
  • Эвакуации и аварийного освещения;
  • Дымоудаления.

В соответствии с актуальными нормативами различают 8 основных степеней огнестойкости.

  • Первые три относятся к сооружениям, элементы которых сделаны из железобетона, штучных натуральных или искусственных камней. Основные различия относятся к материалам межэтажных перекрытий и крыши здания. Для первой категории — это железобетонные плиты, для второй, допускается применение металлических конструкций в стропильных системах покрытия без специальной огнезащиты. Для третьей категории допустимо применение древесины как для перекрытий, так и для стропильных систем. Деревянные элементы должны быть либо защищены штукатуркой (листовыми трудногорючими материалами), либо подвергнуться дополнительной обработке антипиренами.
  • К категории 3а и 3б относится здание каркасного типа. Однако если материалами для категории 3а являются незащищенные металлические конструкции (профилированные листовые стройматериалы), то здание категории 3б возводятся из массива древесины или клееного бруса, защищённого антипиреновыми пропитками и подвергнутого дополнительной огнезащите, значительно повышающей предел огнестойкости, EI 60 и более.
  • К 4 категории относятся здания из массива древесины или клееного бруса, имеющие огнезащиту в виде штукатурки. Незащищённые элементы конструкции грунтуются антипиренами.
  • Здания категории 4a (обычно одноэтажные каркасные) состоят из металлического несущего каркаса, обшитого горючими теплоизоляционными материалами.
  • К зданиям 5 категории вообще не предъявляется требование относительно предела огнестойкости.

Предел огнестойкости

Свойство материала комбинированной из нескольких материалов конструкции сопротивляться открытому пламени и высоким температурам без потери основных несущих способностей и функциональных характеристик называется пределом огнестойкости. Выражается в цифровом эквиваленте времени с буквенным шифром:

  • R — потеря строительной конструкцией несущей способности;
  • E — потеря целостности конструкции;
  • I — утрата материалом теплоизолирующей способности.

К примеру, предел огнестойкости ei 30 означает, что строительные конструкции будет сохранять свою целостность и защищать от воздействия высокой температуры на протяжении 30 мин.

Таблица 1: Предел огнестойкости строительных конструкций

Талица 2: Предел огнестойкости противопожарных преград, специальных строительных конструкций, используемых для локализации возгорания

Талица 3: Предел огнестойкости конструкций, заполняющих проемы (окна, двери, ворота) в противопожарных преградах

Способы увеличения предела огнестойкости стройматериалов

Существует целый ряд способов, способствующих увеличению времени сопротивления конструкций и материалов огню:

Обмазки и штукатурки. Один из наиболее распространенных и доступных способов. Может применяться для таких материалов, как дерево и древесно-стружечные изделия, железобетон, бетонные блоки, металл, полимерные стройматериалы. Может применяться как на несущих, так и ограждающих конструкциях.

Эффективная толщина слоя защиты не менее 25мм. Хорошие показатели защиты продемонстрированы такие обмазки, как: известково-цементная штукатурка, вермикулит, перлит.

Использование асбест-вермикулита является более эффективным методом, но допускается только в помещениях с ограниченной посещаемостью из-за вредного влияния асбеста.

Облицовка. Может осуществляться как специальными материалами вроде гипсовых плит или шамотного кирпича, так и обычным керамическим кирпичом. Эффективность защиты зависит от толщины изоляции. Глиняная плита толщиной до 80 мм повышает предел огнестойкости бетонной колонны до 4,8 ч. А облицовка такого же элемента обычным глиняным кирпичом — всего до 2 ч.

Защитные экраны. Чаще всего такими конструкциями в виде подвесных потолков с несгораемыми плитами закрываются панели перекрытия.

Современные производители отделочных материалов выпускают довольно большое количество трудносгораемых листовых облицовок и сайдинга, который можно устанавливать на стены и колонны. Экраны могут различаться по своему защитному эффекту: теплоотводящие и поглощающие.

Последние, как правило, защищают от лучистой энергии открытого пламени. Различается и конструктивное исполнение, бывают стационарные экраны и передвижные (временные).

Одной из разновидностей защитных экранов являются водяные завесы. Они создаются различными установками автоматического пожаротушения, как правило дренчерными. Их можно причислить к отдельному способу увеличения огнестойкости.

Однако при стремительном распространении очага возгорания по большой площади такой способ малоэффективен. С недавнего времени существует решения, позволяющие более эффективно защищать металлические конструкции.

Несущие колонны охлаждаются путём циркуляции воды во внутренних полостях изделия.

Химические средства защиты. Обычно антипиреновые составы в виде пропиток применяются для обработки древесины. Однако такой способ является довольно дорогостоящим и трудоемким.

Кроме того его эффективность в значительной мере зависит от типа древесины — строения и плотности древесных волокон.

В большинстве случаев приобретённые защитные свойства материала значительно ниже тех, которые рекламирует производитель антипиреновой грунтовки.

Защитные лакокрасочные материалы. Наносятся на поверхность строительной конструкции и пригодны для использования на любом стройматериале. Принцип действия большинства таких защит состоит в термореактивном эффекте. Под воздействием температуры краска вспучивается, создавая дополнительный слой теплоизоляции.

Такие покрытия имеют сравнительно доступную стоимость, просты в предварительной подготовке основания и самой смеси. Легко наносятся на поверхности любой сложности. Имеют хорошие огнезащитные показатели и широкий спектр применения.

Как правило, используются для повышения предела огнестойкости металлических конструкций.

Наиболее распространенными на данный момент являются следующие средства:

  • Германия — Пироморс, Унитерм;
  • Финляндия — Винтер;
  • Венгрия — Фламс САФЕ;
  • Россия — Файрекс;
  • Украина — ОВК — 2, Эндотерм – ХТ — 150.

Несмотря на высочайшую эффективность, таким материалы можно приготовить самостоятельно. Для этого необходимо смешать истолченный в порошок асбест и жидкое стекло в пропорциях 4 к 10 соответственно. Смесь тщательно перемешать. В зависимости от консистенции она может наноситься щеткой, валиком или при помощи краскопульта. Ориентировочный расход защитной смеси 0,5-1 кг/м2 при слое 2-3 мм.

При использовании многокомпонентных защитных химических средств необходимо помнить, что в состав некоторых из них входят органические компоненты. При превышении температуры более 300°С такие средства разлагаются с выделением в атмосферу токсичных веществ. Предпочтительнее использовать вспучивающиеся покрытия на минеральной основе с жидким стеклом в виде вяжущего ВЗП-1 — ВЗП-12.

Прессование древесины. Сравнительно новый и дорогостоящий метод, который заключается во введении в толщу древесины специальных химических веществ, размягчающих целлюлозу. После этого осуществляется прессование под большим давлением. После этого материал приобретает значительную плотность и прочность, а также устойчивость к огню с повышением категории до трудносгораемых.

Особенности определения предела огнестойкости строительных конструкций

Перед определением огнестойкости сооружения необходимо осуществить расчет огнестойкости строительных конструкций, которые его составляют. При таком расчете необходимо учитывать определенные нюансы.

  1. Во-первых, слоистые ограждения значительно превосходит по своим теплоизоляционным характеристикам каждый отдельно взятый материал, из которых они изготовлены.
  2. Во-вторых, изделия, имеющие в своем составе воздушные прослойки, повышают свой уровень огнестойкости в среднем на 10% по сравнению с аналогичными изделиями, не имеющими такой прослойки.

В-третьих, при расчете необходимо учитывать направление теплового потока и соответствующим образом размещать защитные слои, вплоть до их несимметричного нанесения.

Источник: http://ohranivdome.net/pozharnaya-signalizatsiya/tekhnicheskoe_obsluzhivanie/ognestojjkost-stroitelnykh-konstrukcijj-i-predel-ognestojjkosti-osnovnye-kharakteristiki-materiala.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.