+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Нулевая гипотеза в статистике: пример. Проверка нулевой гипотезы

Статистические гипотезы – MathHelpPlanet

Нулевая гипотеза в статистике: пример. Проверка нулевой гипотезы

Определение статистической гипотезы. Нулевая и альтернативная, простая и сложная гипотезы. Ошибки первого и второго рода. Статистический критерий, наблюдаемое значение критерия. Критическая область. Область принятия нулевой гипотезы; критическая точка. Общая методика построения право-, лево- и двухсторонней критических областей

Понятие и определение статистической гипотезы

Проверка статистических гипотез тесно связана с теорией оценивания параметров. В естествознании, технике, экономике для выяснения того или иного случайного факта часто прибегают к высказыванию гипотез, которые можно проверить статистически, т. е. опираясь на результаты наблюдений в случайной выборке.

Под статистическими подразумеваются такие гипотезы, которые относятся или к виду, или к отдельным параметрам распределения случайной величины. Например, статистической является гипотеза о том, что распределение производительности труда рабочих, выполняющих одинаковую работу в одинаковых условиях, имеет нормальный закон распределения.

Статистической будет также гипотеза о том, что средние размеры деталей, производимые на однотипных, параллельно работающих станках, не различаются.

Статистическая гипотеза называется простой, если она однозначно определяет распределение случайной величины , в противном случае гипотеза называется сложной. Например, простой гипотезой является предположение о том, что случайная величина распределена по нормальному закону с математическим ожиданием, равным нулю, и дисперсией, равной единице.

Если высказывается предположение, что случайная величина имеет нормальное распределение с дисперсией, равной единице, а математическое ожидание — число из отрезка , то это сложная гипотеза.

Другим примером сложной гипотезы является предположение о том, что непрерывная случайная величина с вероятностью принимает значение из интервала , в этом случае распределение случайной величины может быть любым из класса непрерывных распределений.

Часто распределение величины известно, и по выборке наблюдений необходимо проверить предположения о значении параметров этого распределения. Такие гипотезы называются параметрическими.

Проверяемая гипотеза называется нулевой и обозначается . Наряду с гипотезой рассматривают одну из альтернативных (конкурирующих) гипотез .

Например, если проверяется гипотеза о равенстве параметра некоторому заданному значению , то есть , то в качестве альтернативной гипотезы можно рассмотреть одну из следующих гипотез: где — заданное значение, .

Выбор альтернативной гипотезы определяется конкретной формулировкой задачи.

Правило, по которому принимается решение принять или отклонить гипотезу , называется критерием .

Так как решение принимается на основе выборки наблюдений случайной величины , необходимо выбрать подходящую статистику, называемую в этом случае статистикой критерия .

При проверке простой параметрической гипотезы в качестве статистики критерия выбирают ту же статистику, что и для оценки параметра .

Проверка статистической гипотезы основывается на принципе, в соответствии с которым маловероятные события считаются невозможными, а события, имеющие большую вероятность, — достоверными; Этот принцип можно реализовать следующим образом.

Перед анализом выборки фиксируется некоторая малая вероятность , называемая уровнем значимости.

Пусть — множество значений статистики , а — такое подмножество, что при условии истинности гипотезы вероятность попадания статистики критерия в равна , то есть .

Обозначим выборочное значение статистики , вычисленное по выборке наблюдений. Критерий формулируется так: отклонить гипотезу , если ; принять гипотезу , если .

Критерий, основанный на использовании заранее заданного уровня значимости, называют критерием значимости.

Множество всех значений статистики критерия , при которых принимается решение отклонить гипотезу , называется критической областью; область называется областью принятия гипотезы .

Уровень значимости определяет размер критической области . Положение критической области на множестве значений статистики зависит от формулировки альтернативной гипотезы .

Например, если проверяется гипотеза , а альтернативная гипотеза формулируется как , то критическая область размещается на правом (левом) “хвосте” распределения статистики , т. е.

имеет вид неравенства , где — значения статистики , которые принимаются с вероятностями соответственно и при условии, что верна гипотеза . В этом случае критерий называется односторонним (соответственно правосторонним и левосторонним).

Если альтернативная гипотеза формулируется как , то критическая область размещается на обоих “хвостах” распределения , то есть определяется совокупностью неравенств и в этом случае критерий называется двухсторонним.

Расположение критической области для различных альтернативных гипотез показано на рис. 30, где — плотность распределения статистики критерия при условии, что верна гипотеза , — область принятия гипотезы, .

Проверку параметрической статистической гипотезы с помощью критерия значимости можно разбить на этапы:

1) сформулировать проверяемую и альтернативную гипотезы;

2) назначить уровень значимости ;

3) выбрать статистику критерия для проверки гипотезы ;

4) определить выборочное распределение статистики при условии, что верна гипотеза ;

5) в зависимости от формулировки альтернативной гипотезы определить критическую область одним из неравенств или совокупностью неравенств и ;

6) получить выборку наблюдений и вычислить выборочные значения статистики критерия;

7) принять статистическое решение: если , то отклонить гипотезу как не согласующуюся с результатами наблюдений; если , то принять гипотезу , т. е. считать, что гипотеза не противоречит результатам наблюдений.

Обычно при выполнении пп. 4-7 используют статистику с нормальным распределением, статистику Стьюдента, Фишера.

Пример 3. По паспортным данным автомобильного двигателя расход топлива на 100 км пробега составляет 10 л. В результате изменения конструкции двигателя ожидается, что расход топлива уменьшится.

Для проверки проводятся испытания 25 случайно отобранных автомобилей с модернизированным двигателем, причем выборочное среднее расходов топлива на 100 км пробега по результатам испытаний составило 9,3 л.

Предположим, что выборка расходов топлива получена из нормально распределенной генеральной совокупности со средним и дисперсией л². Используя критерий значимости, проверить гипотезу, утверждающую, что изменение конструкции двигателя не повлияло на расход топлива.

Решение. Проверим гипотезу о среднем нормально распределенной генеральной совокупности. Проверку проведем по этапам:

1) проверяемая гипотеза ; альтернативная гипотеза ;

2) уровень значимости ;

3) в качестве статистики критерия используем статистику математического ожидания — выборочное среднее;

4) так как выборка получена из нормально распределенной генеральной совокупности, выборочное среднее также имеет нормальное распределение с дисперсией . При условии, что верна гипотеза , математическое ожидание этого распределения равно 10. Нормированная статистика имеет нормальное распределение;

5) альтернативная гипотеза предполагает уменьшение расхода топлива, следовательно, нужно использовать односторонний критерий. Критическая область определяется неравенством . По прил. 5 находим ;

б) выборочное значение нормированной статистики критерия

7) статистическое решение: так как выборочное значение статистики критерия принадлежит критической области, гипотеза отклоняется: следует считать, что изменение конструкции двигателя привело к уменьшению расхода топлива. Границу критической области для исходной статистики критерия можно получить из соотношения , откуда , т. е. критическая область для статистики определяется неравенством .

Ошибки первого и второго рода

Решение, принимаемое на основе критерия значимости, может быть ошибочным. Пусть выборочное значение статистики критерия попадает в критическую область, и гипотеза , отклоняется в соответствии с критерием.

Если, тем не менее, гипотеза верна, то принимаемое решение неверно. Ошибка, совершаемая при отклонении правильной гипотезы if о, называется ошибкой первого рода.

Вероятность ошибки первого рода равна вероятности попадания статистики критерия в критическую область при условии, что верна гипотеза , т. е. равна уровню значимости

Ошибка второго рода происходит тогда, когда гипотеза принимается, но в действительности верна гипотеза . Вероятность ошибки второго рода вычисляется по формуле

Пример 4. В условиях примера 3 предположим, что наряду с гипотезой л рассматривается альтернативная гипотеза л. В качестве статистики критерия снова возьмем выборочное среднее . Предположим, что критическая область задана неравенством л. Найти вероятности ошибок первого и второго рода для критерия с такой критической областью.

Решение. Найдем вероятность ошибки первого рода. Статистика критерия при условии, что верна гипотеза л, имеет нормальное распределение с математическим ожиданием, равным 10, и дисперсией, равной . Используя прил. 5, по формуле (11.1) находим

Это означает, что принятый критерий классифицирует примерно 8% автомобилей, имеющих расход 10 л на 100 км пробега, как автомобили, имеющие меньший расход топлива. При условии, что верна гипотеза л, статистика имеет нормальное распределение с математическим ожиданием, равным 9, и дисперсией, равной . Вероятность ошибки второго рода найдем по формуле (11.2):

Следовательно, в соответствии с принятым критерием 13,6% автомобилей, имеющих расход топлива 9 л на 100 км пробега, классифицируются как автомобили, имеющие расход топлива 10 л.

Перейти на форум (помощь с решением задач, обсуждение вопросов по математике).

Источник: http://MathHelpPlanet.com/static.php?p=statisticheskie-gipotezy

Проверка гипотез

Нулевая гипотеза в статистике: пример. Проверка нулевой гипотезы

Общий обзор

Определение нулевой и альтернативной гипотезы, уровня статистической значимости

Получение статистики критерия, определение критической области

Получение значения р (достигнутого уровня значимости)

Применение значения р

Проверка гипотез против доверительных интервалов

Часто делают выборку, чтобы определить аргумен­ты против гипотезы относительно популяции (генеральной совокупности). Этот процесс известен как проверка гипотез (проверка статистических гипотез или проверка значимости), он представляет количественную меру аргументов про­тив определенной гипотезы.

Установлено 5 стадий при проверке гипотез:

  1. Определение нулевой () и альтернативной гипотезы () при исследовании. Определение уровня значимости критерия.
  2. Отбор необходимых данных из выборки.
  3. Вычисление значения статистики критерия, отвечающей .
  4. Вычисление критической области, проверка статистики критерия на предмет попадания в критическую область.
  5. Интерпретация достигнутого уровня значимости р и результатов.

Определение нулевой и альтернативной гипотез, уровня статистической значимости

При проверке значимости гипотезу следует формулировать независимо от используемых при ее проверке данных (до проведения проверки). В таком случае можно получить действительно продуктивный результат.

Всегда проверяют нулевую гипотезу (), которая отвергает эффект (например, разница средних равняется нулю) в популяции.

Например, при сравнении показателей курения у мужчин и женщин в популяции нулевая гипотеза означала бы, что показатели курения одинаковые у женщин и мужчин в популяции.

Затем определяют альтернативную гипотезу (), которая принимается, если нулевая гипотеза неверна. Альтернативная гипотеза больше относится к той теории, которую собираются исследовать. Итак, на этом примере альтернативная гипотеза заключается в утверждении, что показатели курения различны у женщин и мужчин в популяции.

Разницу в показателях курения не уточнили, т.е. не установили, имеют ли в популяции мужчины более высокие или более низкие показатели, чем женщины. Такой подход известен как двусторонний критерий, потому что учитывают любую возможность, он рекомендуется постольку, поскольку редко есть уверенность заранее в направлении какого-либо различия, если таковое существует.

В некоторых случаях можно использовать односторонний критерий для гипотезы , в котором направление эффекта задано. Его можно применить, например, если рассматривать заболевание, от которого умерли все пациенты, не получившие лечения; новый препарат не мог бы ухудшить положение дел.

Уровень значимости. Важным этапом проверки статистических гипотез является определение уровня статистической значимости , т.е. максимально допускаемой исследователем вероятности ошибочного отклонения нулевой гипотезы.

Получение статистики критерия, определение критической области

После того как данные будут собраны, значения из выборки подставляют в формулу для вычисления статистики критерия (примеры различных статистик критериев см. ниже). Эта величина количественно отражает аргументы в наборе данных против нулевой гипотезы.

Критическая область. Для принятия решения об отклонении или не отклонении нулевой гипотезы необходимо также определить критическую область проверки гипотезы.

Выделяют 3 вида критических областей:

  • двусторонняя:

Рис. 1 Двусторонняя критическая область

  • левосторонняя:

Рис. 2 Левосторонняя критическая область

  • правосторонняя:

Рис. 3 Правосторонняя критическая область

– заданный исследователем уровень значимости.

Если наблюдаемое значение критерия (K) принадлежит критической области (Kкр, заштрихованная область на рис.1-3), гипотезу отвергают, если не принадлежит – не отвергают.

Для краткости можно записать и так:

| K | >Kкр – отклоняем H0

| K | < Kкр – не отклоняем H0

Все статистики критерия подчиняются известным теоретическим распределениям вероятности. Значение статистики критерия, полученное из выборки, связывают с уже известным распределением, которому она подчиняется, чтобы получить значение р, площадь обоих “хвостов” (или одного “хвоста”, в случае односторонней гипотезы) распределения вероятности.

Большинство компьютерных пакетов обеспечивают автоматическое вычисление двустороннего значения р.

Значение р — это вероятность получения нашего вычисленного значения критерия или его еще большего значения, если нулевая гипотеза верна.

Иными словами, p – это вероятность отвергнуть нулевую гипотезу при условии, что она верна.

Нулевая гипотеза всегда относится к популяции, представляющей больший интерес, нежели выборка. В рамках проверки гипотезы мы либо отвергаем нулевую гипотезу и принимаем альтернативу, либо не отвергаем нулевую гипотезу. Подробнее об ошибках при проверке гипотез

Применение значения р

Следует решить, сколько аргументов позволят отвергнуть нулевую гипотезу в пользу альтернативной. Чем меньше значение р, тем сильнее аргументы против нулевой гипотезы.

  • Традиционно полагают, если р < 0,05, (=0,05) то аргументов достаточно, чтобы отвергнуть нулевую гипотезу, хотя есть небольшой шанс против этого. Тогда можно отвергнуть нулевую гипотезу и сказать, что результаты значимы на 5% уровне.
  • Напротив, если р > 0,05, то аргументов недостаточно, чтобы отвергнуть нулевую гипотезу. Не отвергая нулевую гипотезу, можно заявить, что результаты не значимы на 5% уровне. Данное заключение не означает, что нулевая гипотеза истинна, просто недостаточно аргументов (возможно, маленький объем выборки), чтобы ее отвергнуть.

Уровень значимости (т.е. выбранная “граница отсечки”) 5% задается произвольно. На уровне 5% можно отвергнуть нулевую гипотезу, когда она верна. Если это может привести к серьезным последствиям, необходимо потребовать более веских аргументов, прежде чем отвергнуть нулевую гипотезу, например, выбрать значение = 0,01 (или 0,001).

Определение результата только как значимого на определенном уровне граничного значения (например 0, 05) может ввести в заблуждение. Например, если р = 0,04, то нулевую гипотезу отвергаем, но если р = 0,06, то ее не отвергли бы. Действительно ли они различны? Мы рекомендуем всегда указывать точное значение р, обычно получаемое путем компьютерного анализа.

Проверка гипотез против доверительных интервалов

Доверительные интервалы и проверка гипотез тесно связаны. Первоначальная цель проверки гипотезы состоит в том, чтобы принять решение и предоставить точное значение р.

Доверительный интервал (ДИ) количественно определяет изучаемый эффект (например, разницу в средних) и дает возможность оценить значение результатов. ДИ предоставляют интервал вероятных значений для истинного эффекта, поэтому его также можно использовать для принятия решения даже без точных значений р.

Например, если бы гипотетическое значение для данного эффекта (например, значение, равное нулю) находилось вне 95% ДИ, можно было бы счесть гипотетическое значение неправдоподобным и отвергнуть . В этом случае станет известно, что р< 0,05, но не станет известно его точное значение

Связанные определения:
p-уровень
Альтернативная гипотеза, альтернатива
Альфа-уровень
Бета-уровень
Гипотеза
Двусторонний критерий
Критерий для проверки гипотезы
Критическая область проверки гипотезы
Мощность
Нулевая гипотеза
Односторонний критерий
Ошибка I рода
Ошибка II рода
Статистика критерия
Эквивалентные статистические критерии

В начало

портала

Источник: http://statistica.ru/theory/proverka-gipotez/

Проверка статистических гипотез: основные понятия и примеры

Нулевая гипотеза в статистике: пример. Проверка нулевой гипотезы

Статистическая гипотеза – это некоторое предположение о свойствах генеральной совокупности, которое необходимо проверить. Статистические гипотезы выдвигаются, когда необходимо проверить, является ли наблюдаемое явление элементом случайности или результатом воздействия некоторых мероприятий.

Например, необходимо выяснить, значительно ли отличается средний объём продаж после проведения рекламной кампании от среднего объёма продаж после проведения рекламной кампании. Если ответ на этот вопрос положителен, то можно сделать вывод о том, что изменения являются результатом рекламной кампании.

Выводы, полученные путём проверки статистических гипотез, носят вероятностный характер: они принимаются с некоторой вероятностью. Статистическая гипотеза может быть также предположением о свойствах двух совокупностей, если, например, в ходе мероприятий имело место воздействие только на одну совокупность и необходимо сделать вывод о том, было ли это воздействие результативным.

Шаги проверки статистических гипотез следующие:

  • формулируется основная гипотеза H0 и альтернативная гипотеза H1;
  • выбирается статистический критерий, с помощью которого будет проверяться гипотеза;
  • задаётся значение уровня значимости α;
  • находятся границы области принятия гипотезы;
  • делается вывод о принятии или отвержении основной гипотезы H0.

Рассмотрим эти шаги и связанные с ними понятия подробнее.

Статистические гипотезы: основная и альтернативная

Основная гипотеза H0 – предположение о свойствах генеральной совокупности, которое является логичным и правдоподобным, но требует проверки. Основная гипотеза обладает “презумпцией невиновности”, или точнее “презумпцией справедливости”: пока не доказано, что её утверждение ложно, она считается истинной.

Альтернативная гипотеза H1 – утвержление о свойствах генеральной совокупности, которое принимается в случае, когда нет возможности принять основную гипотезу.

Приведём примеры того, как формулируются основная и альтернативная гипотезы.

Пример 1. До и после проведения рекламной кампании были собраны данные о среднем объём продаж.

Основная гипотеза H0: средний объём продаж до проведения рекламной кампании незначительно отличается от среднего объёма продаж после проведения рекламной кампании.

Альтернативная гипотеза H1: средний объём продаж изменился после проведения рекламной кампании.

Пример 2. После изменения конфигурации компьютерной сети были собраны случайным образом 200 замеров скорости передачи сообщений.

Основная гипотеза H0: изменение конфигурации не имело эффекта.

Альтернативная гипотеза H1: эффект от изменения статистически значим.

Статистические критерии для проверки гипотез

Статистический критерий – статистическая характеристика выборки, вычисляемая по некоторому математическому соотношению (формуле) на основе данных, имеющихся в выборке.

По значению этой характеристики принимается решение, принимать основную гипотезу или нет. Статистические критерии бывают двух видов:

  • односторонний критерий – критерий, значения которого принадлежат области (0; +∞);
  • двусторонний критерий – критерий, значения которого принадлежат области (-∞; +∞).

Свойства статистического критерия:

  • статистический критерий является случайной величиной, закон распределения которой известен. Зачастую в названии статистического критерия упоминается его закон распределения. Например, критерий хи-квадрат-Пирсона подчиняется закону распределения хи-квадрат;
  • чем ближе значение статистического критерия к нулю, тем более вероятно, что основная гипотеза является верной.

Нет времени вникать в решение? Можно заказать работу!

Уровень значимости α, ошибки первого и второго рода

Уровень значимости α – это вероятность ошибки первого рода. Значение уровня значимости обычно достаточно малое и задаётся аналитиком, проверяющим гипотезу. Чаще всего принимает значения 0,01 (1%), 0,05 (5%) и 0,1 (10%).

При проверке гипотезы всегда существует вероятность того, что будет сделано ошибочное заключение. Существуют два рода ошибки.

Ошибка первого рода – отвержение основной гипотезы при том, что она верна.

Ошибка второго рода – принятие основной гипотезы при том, что она ложна.

Со значением уровня значимости связано значение уровня доверия p.

Уровень доверия p – вероятность принятия верной гипотезы. Помним: пока не доказано, что основная гипотеза H0 является ложной, мы считаем её верной. Поэтому уровень значимости будет определять вероятность принятия основной гипотезы. Если уровень значимости α – вероятность отвержения верной гипотезы, то вероятность принятия верной гипотезы: p = 1 – α.

Аналитик сам управляет ошибкой первого рода – задаёт вероятность её наступления.

Ошибкой второго рода он управлять не может – всегда существует вероятность того, что может быть принята неверная гипотеза.

Поэтому, чтобы избежать нежелательных последствий от принятия неверной гипотезы, основная гипотеза формулируется таким образом, чтобы риск от последствий принятия неверной гипотезы был минимальным.

Пример 3. В лаборатории фармацевтического предприятия делается контрольный замер на соответствие контрольного состава лекарственных препаратов стандарту. Какие варианты гипотез могут быть предложены?

Решение.

Первый вариант.

Основная гипотеза H0 – лекарства соответствуют стандарту.

Альтернативная гипотеза H1 – лекарства не соответствуют стандарту.

Второй вариант.

Основная гипотеза H0 – лекарства не соответствуют стандарту.

Альтернативная гипотеза H1 – лекарства соответствуют стандарту.

В первом случае, принимая во внимание, что вероятность принятия основной гипотезы высока, мы имеем высокий риск нежелательных последствий принятия неверной гипотезы.

Во втором случае, даже если мы будем вынуждены принять гипотезу, что лекарственные препараты не соответствуют стандарту, а на самом деле имеет место ошибка второго рода, придётся провести дополнительные контрольные замеры и более тщательно провести анализ химического состава.

В любом случае, это повлечёт за собой более тщательный анализ, а риск нежелательных последствий может оказаться не столь значимым.

По причинам, которые мы выяснили в примере 3, статистические гипотезы часто формулируются следующим образом: “статистическая значимость между факторами незначима”, “выборки незначимо отличаются по своим свойствам”, “фактор не имеет значимого влияния на исследуемый процесс”.

Нахождение границ области принятия гипотезы

Область принятия гипотезы (ОПГ) – подмножество таких значений критерия, при которых основная гипотеза не может быть отвергнута. Область принятия гипотезы всегда включает в себя значение 0.

Критическая область – подмножество таких значений критерия, при которых основная гипотеза не может быть принята.

В случае, если используется односторонний критерий, ОПГ включает в себя подмножество положительных значений критерия. В таком случае у критерия есть только одна критическая область.

В случае, если используется двусторонний критерий, который может принимать как положительные, так и отрицательные значения, у него имеются две критические области: подмножество отрицательных и подмножество положительных значений критерия, при которых гипотеза не может быть принята.

На этом шаге требуется найти такое подмножество значений критерия, к которому значение выбранного критерия будет принадлежать с вероятностью p. Точнее, необходимо найти крайние значения критерия в этом подмножестве.

Поэтому процедура нахождения границ области принятия гипотезы сводится к решению следующей задачи:

P{R'

Источник: https://function-x.ru/statistics_hypotesis.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.